Cell-type specific TF binding site paper published in Molecular Cell

Distinct Properties of Cell-Type-Specific and Shared Transcription Factor Binding Sites

Jason Gertz, Daniel Savic, Katherine E. Varley, E. Christopher Partridge, Alexias Safi, Preti Jain, Gregory M. Cooper, Timothy E. Reddy, Gregory E. Crawford, Richard M. Myers 

Most human transcription factors bind a small subset of potential genomic sites and often use different subsets in different cell types. To identify mechanisms that govern cell-type-specific transcription factor binding, we used an integrative approach to study estrogen receptor α (ER). We found that ER exhibits two distinct modes of binding. Shared sites, bound in multiple cell types, are characterized by high-affinity estrogen response elements (EREs), inaccessible chromatin, and a lack of DNA methylation, while cell-specific sites are characterized by a lack of EREs, co-occurrence with other transcription factors, and cell-type-specific chromatin accessibility and DNA methylation. These observations enabled accurate quantitative models of ER binding that suggest tethering of ER to one-third of cell-specific sites. The distinct properties of cell-specific binding were also observed with glucocorticoid receptor and for ER in primary mouse tissues, representing an elegant genomic encoding scheme for generating cell-type-specific gene regulation.

Link to full text (opens in new window).

Source: http://www.sciencedirect.com/science/artic...